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“ ABSTRACT

\I'I'he effective viscosity of a suspension is defincd to be the four-tensor which
relates the average deviatoric stress to the average rate of mm_t_he
cftfective viscosity of an array of spheres centered on the points of a periodic lattice

IS deterwined.

in an incompressiblc Newtonian ﬂuldA The formulation involves the traction
excrted on a single spl;ere by the fluid, and an integral cquation for this traction is
derived. For lattices with cubic symmetry the cffective viscosity tensor involves
just two parameters. ;cﬁ;e’are computed numerically for simple, body-centered
and face-centered cubic lattices of spheres with solute concentrations up to m of I
the close-packing concentration. Asymptotic results for high concemranons‘ Larc
obtained for arbitrary lattice geometrics, and found to be in good agreement w:th ‘
the numerical results for cubic lattices. The low concentration asymptdﬁé ‘ex’pah' T

sions of Zuzovsky also agree well with the numerical results.
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Introduction
. ;;E We shall calculate the effective viscosity of a suspension of rigid spheres in an incompressible
'.'ﬂ
;\; viscous fluid, with the spheres centered at the points of a periodic lattice. For such a special

configuration we can obtain results for all values of thes xelussmeoncentration ¢, from zero up to
the close-packing value ¢png,.

We begin by proving that the average deviatoric stress in the suspension is lincarly related to
the average rate of strain. The effective viscosity pj is defined to be the four-tensor in this rela-

tion. It is determined by the traction of the fluid on a single sphere, and an integral equation for

this traction is derived. Its kemel is a periodic Green’s function which can be represented as a sum

R ‘, over the reciprocal lattice. The integral equation also involves the angular velocity of the sphere,
s

3% for which a second equation is obtained.

' d

}: For a cubic lattice (simple, body-centered or face-centered) the symmetries of the kernel

greatly simplify the integral equation. It can be shown that the angular velocity of each sphere is

just one half the curl of < average fluid velocity, and the effective viscosity tensor simplifics to

piu = p(1 +B)'%(3u Su+8u8p— %susu) + pla—BX8yu — %511814). 4y

Here p is the viscosity of the fluid, 8,y is one if all the subscripts are equal and zero otherwise,

and a and 8 are functions of the concentration and the lattice geometry which can be expressed as

integrals of the traction over a single sphere. We use a Galerkin method to solve for the traction,

following the procedure used by Zick and Homsy (1982) and Zick (1983). The results for « and 8

~ T
-

‘{q" arc shown in Ilustrations 1-6.
:' For low concentrations Zuzovsky (1976) and Zuzovsky, Adler and Brenner (1983) have
‘}ﬁ. obtained asymptotic formulas for « and 8 to O(c'%?). Our numerical results corroborate their for-

mulas and determine their range of validity. Frankel and Acrivos (1967) obtained the leading order

-
-

0 G

E *

term in the asymptotic cxpansion for a at high concentrations, but only for a simple cubic lattice.

Zuzovsky (1976) corrected their result and also gave the leading order term for 8. We have

>t s

e A
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¥
obtained additional terms in these ¢xpansions for a simple cubic lattice and have also calculated the |
,f!{'%; corresponding results for body-centered and face-centered cubic lattices. Our analysis is in fact ‘
Sav
%% valid for arbitrary lattice geometries, and a general high concentration asymptotic formula for p/j
YN
& is given. The asymptotic formulas for the three cubic lattices are in good agreement with our
numerical results cxcept for B in the face-centerd case, where numerical errors at high concentra-
tions are severe. These results show that the contention by Kapral and Bedeaux (1978) of a singu-
larity at less than close-packing concentrations is incorrect.
,x’ This work was supported in part by the Air Force Office of Scientific Research,
;"ic the Army Research Office, the Offjce of Naval Regearch and the National
e Science Foundation. Computing time was provided by the CLaSSiC project
N of the Office of Naval Research.
Formulation
We consider a set of solid, neutrally buoyant spheres of radius & centered on the points of an
infinite three-dimensional latdce 1*= ayay + apdy+ sy, a €Z°. The basis vectors a, determine a
A
flﬁ unit cell having volume = =|a;-(ayXxa3)], and the volume concentration of spheres is
* §]
%‘ : ¢ =4wb?/3r5. We assume that the spheres are immersed in a homogeneous, isotropic Newtonian
By

fluid undergoing slow flow. Then within the region £ containing the fluid, the pressure p, viscosity

u, velocity u; and stress tensor o;; satisfy the Stokes equations:

ou
=L = 0, x€E, ) i
] ax,
G . ou, ou
9
! = - ——+ ] )
G oy p8,,+p(axj —Lax,) x €E )
5, :
N A
_— ] '
SL=0 xeE @
o 3x,
?z%k We introducc an overall constant shear tensor y;;, with y; =0, by requiring that the fluid  —— -
-— velocity u; be the sum of a lincar part y;x; and a part which is lattice-periodic. More precisely, e }
i B ;
n ’* we impose the condition L mitag
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&+ =y +yyrf,  x€E, a€Zd. )

We impose no-slip boundary conditions on the surfaces of the spheres. The spheres may
rotate with some angular velocity w; which, by periodicity, must be the same for each sphere. Let
S denote the sphere centered at the origin and »; the outward normal to its surface. We can
assume that S is not translating, hence the no-slip boundary condition can be expressed as

W = eyxw Xy, Xg €9S. (6)
{‘ Finally, the assumption of slow flow lcads to the vanishing of the torque on each sphere:
Ea

= 0. 7

- fas%xﬂum d4 )]
B
iy
!v‘:* _’i'. . .
o Definition and Existence of the Effective Viscosity

Let S; and %';J—l denote the volume averages of the stress and velocity gradient, respec-
)

tively, over some region V. As shown by Batchelor (1970), they are related by

1 oU, U, 1.
Sy = '“WLJ”*"‘E,‘*E,L’* + 5 Jtouxym—plun +undd @
Here V is the volume of the region V, the sum is over the particles in V, and the integral in the
summand is over the surface of the summand particle. For the periodic suspension described in

the last section, with V a unit cell of the lattice containing S, (8) simplifies to

- Sy = “511%/'.’:,",? dv + plyy+v) + fo_lfas"kal"k d4, ©)
K,
s and the bulk deviatoric stress D, is therefore given by
DU = y.(‘n] +7]l) + ‘l'o-lfas(c,-*xj - %8,,0,,,,.:,,.)",, dA. (10)
“",i 7

a3 S \' "o %, Wt &'h\ E\ ‘E\,h'p ‘E: fl h'b ‘t.\ ﬂ\ m ﬂ ﬂ
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From the linearity of the governing equations and the boundary conditions, the integral in

(10) must be linear in the average velocity gradient y;;:

fasduXJnk d4 = Mm»['{u. (11)

Since no external couple is acting on the pﬁrﬁcles. My must be symmetric in i and j, and for
definiteness we may assume that M =0, since only its contraction with yy is significant. By

using (11) we can rewrite (10) in the form

Dy = 2pjyu (12)

where

Bl = %"(alksjl +840, -%8;,8,,,) + %‘fo'l(Muu -%SUMM)- (13)

The tensor pjy is symmetric and traceless in its first pair of indices and traceless in its last

pair of indices. In Appendix A we show that

Bi = Py (14)

and so pjyy is symmetric in k and / as well. Thus the average deviatoric stress Dy is linearly
related to the symmetric part of vy. which is the average rate of strain tensor. We are therefore
justified in calling p;; the effective viscosity of the suspension.

The formulation becomes somewhat easier to use if we multiply both sides of (13) by 2y, yu
and use (11). Then

iy = prylyy+yn) + 16ty fasx/ ouny dA. 15

Now the effective viscosity pu can be defined as the unique four-tensor which satisfies (15) for all

Yy with y; =0, and which also satisfies the symmetry conditions

oy ¢ 4
« VW, T

'S L7 f v LIS IR LS «_ = *a e - o < wmwe
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a) Py = P,
b) pa =0, (16)
) in = pi |
It is interesting to note that (15) is precisely the formula one would get using the energy dissi-
pation method. The right side of (15) is the actual rate of cn'ergy dissipation within a lattice cell,
while the left side is the rate of energy dissipation that woﬁd occur in a homogeneous fluid with
viscosity four-tensor pjx; under the same overall shear y;;. However, the symmetry condition (14)
is necessary to define pj uniquely from this equation, and a proof of this identity apparently

requires recourse to the averaged equation formulation.

Integral Equation Formulation

The basic unknown quantity in equation (15) for the effective viscosity is the traction f;
exerted by the fluid on the surface of the sphere $. It is given by
fi = oynmy, X; €0S. (17)

In this section we use Green's method and equations (2)-(7) to derive an integral equation of the
first kind for f;. The derivation follows that of Zick and Homsy (1982).

The fundamental singular solution vy, 7, g, corresponding to unit forces in the k direc-

tion applied at all positions y + 1%, satisfies

av,(x.y) -

% 0, (18)

aVu av

1n(xy) = —q(xy) 8, + “(a—x,"'a'f)' 19)
L Y )
ax, P

B S P T T R T P R U W R ~..l:‘r&m’.r;vmmtvy:r:-nv.irz-r-;r.x*!vi
|
|
{
|




The solution for vy is (Hasimoto, 1959)

- 1 ! 8!k - Slask‘ 2-,[5'-(x—’)
V‘k(x.’) = 4’2“70 Za ( Isalz IS“I‘)e . (21)

Here

S% = ayby + a3y + azhy, a€?, (2)

is a vector in the reciprocal lattice, which has basis

b =75 Maxa), by=15agxa), by =15 Hapxay). (23)

The prime on the sum in (21) means that the index a =0 is to be omitted.

51N
i Let T be a unit cell containing the. sphere at the origin, and let £ = T—S be the fluid
‘\», region within T'. For y € Eo, we multiply (20) by 1,(x) and integrate over E, to get

[ ueZBD 4y o ) yeks o
Eo X

From (2), (3), (18) and (19) it may be shown that

e v

i ax, T = oy, OV 25)
o Then, by using (4), (25) and the divergence theorem, we can write (24) in the form

»1: "z !31'—33["‘7”, - Vik 0!]]”] dA(x) = - ux(y), y€E, 1' (26)
i‘“ We now proceed to simplify this equation. If f; is any lattice-periodic function then the integral of
ﬁ Jim over the surface of a unit cell is zero, since cach section of the ccll boundary has a congruent,
'< ~: periodically translated section on which the normal points in the opposite dircction. The tensors
v;: t f"_“ should be interpreted as j"-]”: the nonmal , points out of both the sphere S and the unit cell 7.

o """-:"(.f‘-""“-".ﬁﬁ(ﬂ‘
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Ty, Vi and o are all periodic, and the nonperiodic part of y; is simply y;x;. Thus the integral
over T in (26) becomes -

f"[u,fm —voyln dA(x) = faryyx,fmn, dA(x), yeE, (v4))

By using (19), (20), the divergence theorem, the periodicity of vy, and the fact that y; =0, we can
evaluate this latter integral. The result is

i fm.[""l]k = v oyln dAX) = —yuy, YEE, (28)
35y

§rod
;2'25.& The integral over the surface of the sphere in (26) can also be simplified. Using (6), (20) and
4 the divergence theorem, we can write the first part of it as

c f”u,fmn, dA(x) = J;[emum,-eu.u,x,.,S(x-y)]dV. y€E, (29)
if

But ey 7,5 =0 since 7, is symmetric in the indices i and j, and 8(x—y)=0 because y¢ S. Thus
this integral is zero. This fact and (28) enable us to write (26) as

: “Yu + valgllunj dA(X) ‘= -llk(]). ’GEQ (30)
We now let y tend to the boundary of the sphere and use (6) to evaluate the fluid velocity
there. Then (30) becomes
: fasmo,,u, dA(x) = yigy; = ey y), YES. (31
A This is an integral equation for the traction f; =a,,n;, but it also involves the angular velocity ;.
2 , The no-torque condition (7) provides the nceded supplementary condition, and we can solve (7)
T and (31) together for the unknowns f; and w;. These equat.iohs are
A
i j‘
Vi as\’ft(&!)ﬁ(x)dA(x) = Yigly = eryoids Y€3S, (32)
- [ ennfida = o (33)
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The homogeneous form of these equations has the solution f;(x) = kx; for any constant k.
This solution is everywhere normal to the surface of the sphere and represents a uniform pressure.
This presents no difficulties, however, for since y; =0 the solvability condition for (32) is satisfied,
and it may also be verified that any uniform pressure in the traction cancels out in equation (15) for

the effective viscosity.

Symmetry Relations and Cubic Lattices

For simple, body-centered or face-centered cubic lattices a considerable simplification of the
problem is possible. Their symmetries impart a structure to the equations which allow us to deter-
mine the angular velocity w; explicitly and to reduce to two the number of independent coefficients

in the effective viscosity tensor. To show this we define f7* to satisfy

BTo fasv"‘ SPdA(X) = 84,5, — %G,y,,, YEIS (34)

and
fasx,f,”dA ®=0 (35)

The second term on the right side of (34) ensures that the solvability condition for the integral
equation is sausﬁed, and condition (35) pins down the coefficicnt of the null solution x; in f7.

From (32) and (34) we have, up to a solution of the homogeneous integral equation, that
fi = prd(Yn —emw)f P (36)

Consider for a moment an orthogonal linear transformation §;; which maps the reciprocal lat-

tice onto itself. Then from (21) we can show that

Vlk(fnxq'quyq) = $iméin Vm(quyp)v an

and by changing variables from x. y to ¢x, &y in (34) and (35) we can subsequently show that

b v “i. ' ML »h‘ - \ -." ‘* .f -4.. "..'.. - -.".‘—. -.S.‘-. .
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STEX) = Eimnp € /RYX) (8)

We now specialize to a cubic lattice. With no loss of generality we can assume that the coor-
dinate axes and the principal axes of the lattice coincide. Then the reciprocal lattice is also cubic
with its principal axes coincident with the coordinate axes. Thus it is invariant under the reflection
transformation pf’=(—1)*8,,, which changes the sign of the r* coordinate of its argument, and
the coordinate permutation transformation §§ = 84();, where ¢ is any permutation of the symbols
{123}, For these particular orthogonal transformations (38) yields

fAe™) = (=12t e pmy) (9)

Q%) = f479 ). (40)

These identities can be used to simplify (32) and (33). We first solve (33) for w;. Substitu-

tion of (36) into (33) yields
(ra=taon) [ ewxifrdd = 0. @)

However, (39) implies that
f“ eaxfPdd = (-1t fascmx,f,"dA. 42)

and since this must hold for any ¢ = 1,2,3, the integral is non-zero only if the indices k, r, s are all
different. By performing a coordinate permutation ¢ taking k—1, r—2 and s—*3, and using (40),
the integrals can be expressed as

fas!m.\’jfl"dﬁ = tk,,faslulxjf‘ndﬁ. (43)

Upon substitution of (43) into (41) we obtain

P ('y,,-c,,,u,)e,,,, = 0, k= 1.2. 3. (44)
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The solution of this equation for w; is

1
W = —iea]’{g. (45)

This is just one half the curl of the average velocity, which is the same angular velocity that
would be exhibited by a single sphere in an infinite fluid subjected to the shear y;. Thus in the

case of cubic lattices, each sphere spins as if the other spheres were not there.

The structure of the effective viscosity tensor can now be elucidated. By substituting (45)

inio (36) we obtain

fi = %‘"0(7': +1)7, (46)

which upon substitution into (15) yields

2Wityvu = prglry+v) + Sevy (s +n)fasx;ﬁ”dA “n

This can be simplified, for identities (39) and (40) readily yield

fasxlfl'”d“ = (—1)6‘l+au+8"+8"fasxl-ﬂ,d" =123 (48)

and
fas"’ fra = f”x.,u)fa‘{}“') dA, 9)

Identity (48) implies that the integral is zero unless the indices j, i, r, s are equal in pairs, and (49)
implies that many of the remaining non-zero integrals are equal. By using (43) and (49) we can

write relation (47) in the form

piayyYe = pYylyy +vp) + %#‘Yu(?u +yu 8y I +(8y8u — 81 (50)
+(8udy -stjld)’z‘f +(846 "&jld"ff]-

where

o T P P -® a® - - e d"a "< "R " n " - - -y~ - A"
TGS D RO A A S0 G i v A S R Wt o \}\(ﬂm&ﬂw{:}‘{l
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7= fasx, fPdA. (s1)

The solution of (50) for pjy which satisfies the symmetry conditions (16) is

pju = p(l +B)'%(5,~k8ﬂ +840 —%%au) + pla—BXSyu ’%81}8"1) (2)

where
a = 30l -1 = 3 [ Gt —xarFyaa, (53)
g = Jul+1) =3[ s +xairan (54)

Thus the effective viscosity tensor involves just two parameters when the lattice has cubic
symmetry. They can be found from the solutions to two vector integral equations of the set (34)-

(35), namely those for f!! and f;12.

Numerical Method for Cubic Lattices

For cubic lattices the two scalars in the effective viscosity tensor pj; are determined by f;1!

and 2, which satisfy

P"Ofasvu(xyy)ftl'(x) dA (x) = sjlyﬁ— %sl’ij Yy € aS » P= lv 2 (55)

fa S0 AR = 0, (56)

These cquations appear to requirc a numerical solution. The major difficulty in solving (55) is the
complexity of the kemel vy, given by (21), which precludes any method that requircs numerous
evaluations of v;. We use a Galerkin method, with the basis functions chosen to be analytically

integrable against v;;. This method yiclds excellent accuracy with relatively few lattice sum compu-

tations required.
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The Galerkin method may be outlined as follows. We write £;” in the form
(x) = "2 afmefXx), )
N

where {@f™} is a set of basis functions on 3S which span all possible solutions for f;!*. The basis
functions are doubly indexed for later convenience, Substitution of (57) into (55) and integration

against a second basis function yields a linear system of infinite rank for the unknown coefficients

af™
S S Afafm = b j=L23 I=12...; n=12... (58)
i=lkm
where
A = [ [ pronxadolopl0)da dats) (59)
and

b = B~ 3n8u) [yt ) dAG) (60)

The expansion (57) is truncated and the resulting finite matrix problem is solved, yielding an

approximation for the coefficients in (57).

As is readily verified from (21) and (55), /™ is an odd function of x. Thus only odd func-
tions @f™ need be included in the set of basis functions. We choose for the basis functions the
polynomials

ox) = xyxftxt,
o1 = el (61)
ePx) = xf"x;"xg,

where {(px.q:), k=1,2,...} is the set of all distinct ordered pairs of non-ncgative even integers.
These polynomials can be derived from the spherical harmonic functions and form a complete basis

for the sct of odd functions defined on the surface of a sphere.

R L A R R A R T AR, R B LA, SO R UL LR VAU U P LS
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The above basis functions allow the integrals in (59) to be evaluated analytically. Since the
basis functions are odd, substitution of (21) into (59) yields

=53 (—;;,lL, %Ie) [ sinCwS*x)pfmx) dA() (©)
- [ sinawS=nol)ds()
and we can show that (Nunan, 1983)
fassin(g-x)x{‘xg’xg’ dAG) = (=1~ 14nbP*) )

. ’2 g ’2 ppy 25 (BE)(BE)HBES)?

1 (16¢1)
) =01 gm0l c;"uxclqu" |b§|p+ir(‘1“2"":'n jﬁ*’i‘“"“‘"’” 1651

Here g = %(p1+p2+p3+l), the index ¢; begins at 0 or 1 according as p; is even or odd and

increases by steps of 2, and

He-p) p!

cl(een - ©4)

xt=(-2)

The matrix clements involve double integrals and thus a product of terms such as (63), but
the required calculations are not as computationally difficult as they might seem. Due to recursive
identities for the spherical Bessel functions jf,(z), the matrix elements corresponding to basis func-
tions of degree less than or equal to a given M can, for cubic lattices, all be computed from the

principal lattice sums

o zffzgtef
Ss¢t = % |z|2uf-z.:22:2:}+2x+4 sin(|z}), (65)

2' iz

scpt [Z| 7+ B+ a+Ine3 sin(|z()cos({z]), (66)

copt = 3 HHE o)) )

Iz'2r+2:+21+2n+2
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for r+s+t=M+1,0<r<s<tand 1<k <M (SSL** is also needed for k=0.) In (65)-(67), z
denotes 2#5S®. For M =11, which corresponds to 78 basis functions, there are only 684 such
b &,
é,‘; principal lattice sums.
';-‘,5 5 For cubic lattices the symmetries of v; and the basis polynomials produce considerable struc-
£ 1g)
g ture in the linear system (58). Specifically, the matrix A/} can be written in block diagonal form
b with cach block having one fourth the rank of the full matrix, and only one block each is required

to compute the coefficients for £ and £;!2. The actual systems which must be solved to compute

‘u and f.‘n are
‘ ARy Al ABu| [al ) 2bif
?;,ns', Ay Aty ABa| lalf| = 31-bF (68)
3 A8y A8y ABu] |aR ~bff
: s,"
g, and
18
Afty ABuy Aftu] |aff| o
"’; ABp A8y Adul lad| = |0 (69)
¥ Afty Al Afu] [afd 0
%;2; respectively. Each of these matrices is symmetric.
X
g;igg The matrix in (68) is singular, with null vector ;™= 8;)8; representing a uniform pressure
on the surface of the sphere. There is no physical basis for choosing one pressure over another
) (condition (56) is merely convenient), but as previously mentioned a uniform pressure does not
':T affect the effective viscosity. We use a lcast squares algorithm to obtain a solution of (68), and do
:"“'r:}
-~ not implement (56) in the matrix equations.
a;:ﬁ The solution of equations (55)-(56) is not our final goal. It is rather the effective viscosity,
,”Lf 2
gitex which requires the integrals
1 .'l;: ) 0
L‘As fasx, firdA = kzla&’bﬁ, r=12 (70)

o-’-'-'.--.-..-

N GOSN Gl



-15 -

Thus we computed the effective viscosity by solving the linear systems (68) and (69), computing

- By
%
=

5

N = } 3 biGati—alD an
2

LA

e and
il B = %2"‘. biadh+atp), @)
RO <

¥

5

g and substituting these into the formula for pj, repeated here:

l‘i}"l = ”(1+B)' %(aik 81 +81181k - %‘808&[) + p(a—BXBUu - %85]8‘4). (73)

Asymptotic Form of the Effective Viscosity Tensor

The numecrical method just described constituted our primary method of solution for the

effective viscosity problem. However, as will be illustrated in the next section, the numerical

2 method suffered from poor convergence properties at very high concentrations. An asymptotic
h LY

S analysis for the high concentration situation was therefore undertaken. An outline of the analysis is
:é presented in Appendix B; the results are reported here.

The small parameter in the asymptotic analysis is
g = 1_(#)1/{ (74)
Conax

The final result for the equation defining the effective viscosity tensor is

BKYyYM ~ BCmaYyYH (-1-9'6-e"- % In e)}ﬂ: mngmemy (75)

- %[8,,‘2 nyny = epgtindp S mn, 3, nyngline + O(l)]
a A ]

Here the sums are over all unit vectors /i in the direction of a ncarest neighbor sphere, with respect

to a single reference sphere, and the matrix 4;; is defined by
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Au = %(GU-n,n/). ’ (76)

If each sphere in the lattice has more than two nearest neighbor spheres then 4;; is invertible. If
each sphere has only two nearest neighbor spheres, in directions +7, then A is singular with codi-
mension 1 and null vector 4. For such two-nearest-neighbor lattices 4! should be replaced in

(75) by (B™B)~14, where B is the 4x3 matrix consisting of 4 augmented by 4.

When (75) is solved for p;u,, the term in brackets must be made symmetric and traceless in
the subscript pairs i,j and k,/ (by adding terms of the form c; 8y or §;,cy), and symmetric
between these pairs (by adding a term of the form c;; where ¢;a = —cyy), in order to satisfy the
defining conditions (16). The precise way to do this will depend upon the particular lattice being
considered. A number of special cases have been examined for illustration, and the resulting
effective viscosity tensors are as follows.

L  Two-Nearest-Neighbor Lattices, with incident directions +7:

B ~ Beam(Ge ™~ 20 IneXmn, — L8, X ~ 184) + 0. a

II.  Cubic Lattices:

Bk ~ pcm[(%g'l- %ln e)§ (n,nj—%s,,Xn,,n,—%Gu) (73)

- %‘[% 1](5,*5,[4‘818/* -%6,,8H)ln e] +0Q1)

III. Tetragonal Lattice (orthogonal basis a;, with |a;]=ag] < Ja,)):

. 21
Bias ~ p.cw[(%¢ I_Elne)§ (n,n,—-;—ﬁu)(nkn,—%su) (79)

= 18 By + By By - 18, B3~ 28y B}+ 28,84 B31Ine] + 0D,

a 7}
where B,;=% mn, (A=t—, +—).
=2 mn ol o




-17-

IV. Hexagonal Lattice: Same as for tetragonal lattice, but with the factor of 3/16 in the second
line of (79) replaced by 1/8.

Equation (78) for cubic lattices can be written in the form (52), from which asymptotic for-
mulas for a and B are easily obtained. They will be presented in the next section, where numerical

estimates of the leading nonsingular terms in the asymptotic expansions will also be given.

Numerical Results and Discussion

The Galerkin method used to solve (55)-(56) involves approximating f;* by a finite linear
combination of basis polynomials. For any given calculation all basis polynomials of degree less
than or equal to a specified M were used. The number of basis functions for a given M is
(M +1XM +2)/2, but because not all basis functions contribute to each f;!”, the actual number of
unknowns is 3(M +1XM +3)/8 for £;! and (M + 1)X3M +5)/8 for f;2. By using increasing values
of M whilc keeping other parameters of the problem fixed?, we obtained a sequence of results con-
verging to the exact valucs of a and 8. Table 1 illustrates the convergence of the solutions as a

function of M for various valucs of ¢. These results are typical.

For low concentrations convergence is very rapid, and precisc results can be obtained with
just a few basis functions. Indeed, for concentrations less than .06 ouly 3 basis functions (M =1)
give results which have four decimal places of precision, and for concentrations less than .24 a simi-

lar degree of precision is obtained with just 21 basis functions (M =5).

For higher concentrations the convergence rate is not as good. As ¢ increases, the traction on
the surface of a sphere becomes more and more peaked ncar points which are closest to other
sphercs, and more basis polynomials are nceded to represent it accuratcly. However, the matrices
increase in size with the number of basis functions, and their condition numbers increase according-

ly. The effect of the inadequacy of the basis functions in representing the traction is magnified due

+ Since the matrix for a given M contains all the clements necessary to form the matrix for a smaller A/, comput-
ing a sequence of results requires only slightly more cifort than computing one result,
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to these high condition numbers. This is particularly noticeable in the last column of Table 1,
where the computed value of a for M =13 is actually less than that for M =11. The typical

behavior was for a to increase with M, and such anomalies were never seen at lower concentra-

0w e
fat Iu{r'«
._n!‘.i..f o

tions.
deisy . . . . L, . .
%ﬁl The inadequacy of a necessarily finite number of basis functions in representing the traction
&
pst at high concentrations was the major source of numerical error. There was strong evidence of a

*

s

-,

downward bias in the high concentration computations, for all three cubic lattices. This was be-
cause the basis polynomials could represent only a smoothed approximation to the traction at high
concentrations, and so the computed cstimates of the viscosity coefficients were sometimes too low.
The face-centered cubic lattice results were the most adversely affected, because cach sphere in a
face-centered cubic lattice has morc nearcst neighbors than spheres in cither a simplc or body-

centered cubic lattice. Thus the traction on the sphere surface is more complicated, and less well

represcntable by the basis polynomials, for face-centered cubic lattices than in the other two cases.

’ﬁ - The truncation error in the principal lattice sums (65)67), as mcasurcd by the variation in
'; f "’ 3 .

" the computed coefficients a and 8 as the summation range was increased, was insignificant except
*31, for high concentrations and high values of M. Cancellation and roundoff errors in the pricipal lat-

tice sums were deemed insignificant in all cases, as the results did converge with increasing summa-
tion range.

The speed of the algorithm dcpended upon the type of lattice, the number of basis polynomi-

als, and the summation range. The computation of the principal lattice sums consumed the

:2 preponderance of CPU time, and the complexity of this computation increased as the cube of the
x" summation range and as the square of M for a given lattice. The sums contained twice as many
points for a body-centered lattice as for a simple cubic lattice, and four times as many for a face-
‘ﬂ ‘ centered lattice. One of the longer runs typically required several minutes of CPU time on a
;&‘ﬁ VAX-11/780, while a low concentration run required only a few CPU scconds.

AN

As previously mentioned, the numerical results for low concentrations arc both very precise

.....
et .
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and quick to compute. The question remains as to whether the results arc correct. Zuzovsky

(1976) obtained low concentration asymptotic results for what we have identified as the effective

N viscosity tensor. His results are

. a ~ 3cll-(1-60b)c +12ac%+0( ), (80)
"

do” 7

Sy B ~ 3cll-(1+40b)c ~8ac¥*+ (™), 8D

where a and b depend on the lattice geometry:

SC BCC | rcc
| a | 2857 | —.0897 | —.068S
s b | —04655 | 0132 [ o0

A comparison of our computed results with (80) and (81) is illustrated in Table 2. The resuits
agree to four decimal places for concentrations of .04 or less, with the degree of agrecment slowly
dropping off as the concentration increases. Zuzovsky's formulas thus confirm that our program
works correctly and produces accurate results. We can then turn the tables and use our results to
check his. The values in Table 2 and similar comparisons for the other lattices indicate that (80)
and (81) are accurate to within 0.2% for concentrations up to approximately 25% that of close-

packing, and to within 5% for concentrations up to approximately 50% that of closc-packing.

For high concentrations, we compare the numerical results with our asymptotic results for a
and B, obtained by writing (78) in the form (52). These formulas contain only singular terms in the

small parameter e=1-(c/cma)’’. To improve them, we assume that the lcading nonsingular

o,

s

b A
. 2 ¥ : v
LA XEKPK

terms are 1 and elne. Thus, for example, we write the differcnce between a and the singular

i

e asymptotic terms for a simple cubic lattice in the form
A3
agd 3 pil
a3y a- (%e‘l—-iollne) =C+Delne+ Ofe), (32)
ﬁ"l
.
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where C and D are constants to be determined. By plotting the computed value of the left side of
(82) against elne, we determine C and D from the intercept and slope of a line drawn through the !
plotted data for small e. We do the same for all other a’s and 8's. !
Unfortunately, it is precisely for small ¢ that the numerical results are least precise. More- i
Q over, in computing the difference between the numerical and asymptotic values, we may lose
significant digits. For a body-centered or face-centered cubic lattice, the graphs for a exhibit
. definite linear behavior as & becomes small, and the parameters C and D of the limiting line can 1
B be determined with confidence. But in the other cases our estimates of C and D are not as reli- |
a3 »
'?ﬁ, able, and in the casc of B for a facc-centered cubic lattice no estimate of C and D can be made.
9
7z The high concentration asymptotic formulas for the effective viscosity coefficients a and 8,
W including our estimates of the constant terms and coefficients of ¢ Ine, arc as follows:
*
NN
o
Simple Cubic Lattices:
"
s
i a~3 - e+ 31-025¢hne +0(e), @)
3
B~ —%lne +0.63 + 00elne + O(e), (84)
3
1y
b
W Body-Centered Cubic Lattices:
a~ - -ﬁ41!ne ~173-123¢ne + O(e), (85)
. B~ J%’le-l - 3—71-%11“ +128 + 3Selne + Ofe), (86)
s
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a,} .
Face-Centered Cubic Lattics:
~ 3\/§1 -1_ 87\/7"
a ¢ 160 Ine +9.7 +155¢lne + O(e), (87
- Wiz 4 - 472
B 6 ¢ 20 Ine + 0Q1). (88)

Hlustrations 1-6 show our computed results plotted against the volume concentration of the
spheres, and also show graphs of Zuzovsky’s low concentration asymptotic formulas and our high

concentration asymptotic formulas.

PTN Appendix A: A symmetry relation for p

In this appendix we prove the identity Biu = By, Where ppy is the tensor appearing in (12).
The proof is a modification of that of Hinch (1972), who proved a related result for a single particle

in a fluid undergoing Stokes flow.

We begin with the reciprocal thcorem of Lorentz (1896), which states that for any two solu-
tions (¥;,6;;) and (u},0}) of the Stokes equations (2)-(4) in a volume bounded by a surface ' with

unit normal n,

- _ fru,cﬁjn, dd = J;_ ujoy,n; dA. (A1)

Let (4;,0,) and (u},07;) be the two solutions of (2){7) corresponding to y;; and yj;, respectively.

Let T be any unit lattice cell which completely encloscs the sphere at the origin. Taking T to be

- the boundary of the fluid region within 7, the first integral in (A1) becomes

ty ;
n;:: f ll,d’;lllj dA = f ll[d:'k'lk dd - f e,uwkxm}jn, dA. (A2) I
% aT-0s ar as
o Only the nonperiodic part of u;67; contributes to the integral over the cell boundary in (A2).

‘*,u; Morcoser, the no-torque condition (7) implics that the last integral in (A2) is zero. Thus we have

--*'.'
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woyn dA = X; 0 Ny dA. ' A}
far-as 1oy far*” Ok Mg (A3

By using (3)-(6) and the divergence theorem we can then show that

fn_asu,a},n, dA = proyy(yy+vj) + fasy,,x,aj,,nt dA, . (Ad)
which, using (11), may be written as
f”_asuwbn, dA = proyylyy+v3) + Yy Myu Y. (A5)
Similarly,
far- asu}c,,n, dA = p.'roy;/(w +711) + 7;1MIIM7H- (A6)

The reciprocal theorem and (13) then imply

VABGHYR = YiBikYu- (A7

But the choices of y;; and yj; were arbitrary, up to tracelessness, and pjjy is traceless in its first and

last pairs of indices. Thus

< Wi = By (A3)
o

Appendix B: Asymptotic Analysis
ey We consider two spheres, each of radius » and with their centers a distance 2L apart. Let i

denote a unit vector along the line connectng their centers, We define a set of cylindrical coordi-
nates (7,8,7) with its origin at the midpoint betwcen the spheres and its Z-axis in the 4 direction.
Let #t be a unit vector in the #=0 direction and let f=/AXxsi. For convenience we assume that

the origin is translating with a vclocity equal to the average velocity of the spheres.

We write the fuid velocity in cylindrical coordinates as u = &7 + v8 + w2. We define the

parameter

T CLA LAY ° . AEA TR RS SN - -
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=1-2
e=1 T (1)
which is small when the two spheres are nearly touching, and make the following scalings:
z =elz, z = ¢ 1LYz,
F=etLlr, r=e 8LV, -
# = Lu, u=L%, . (B2)
V= Ly, v=L"Y,
w = efLw, w = e~ ALy,
7= pe~V, p = plep
Equations (2)-(4) can then be written as
i u+r-lutr-ly, 4w, =0, (B3)
N2
g‘fé =Pty + e[r Uy~ r vy r~tyy—w,] = 0, (B4)
(8 X%
NN
—rpgt v ¥ elr uptr Ut vy +r- v, = r v =rlw, ] = 0, (BS)
R:: =p: + el —up=r~tu, —r v, + ez[""rr""'—“"r'*"..2”'00] = 0. (B6)
iy ‘
‘-r'{g'%’;
; lt'*‘u‘
' The boundary condition (5) can be written in the scaled coordinates as
u tle(hz— Du, + 0(¢z)'= t (Wit +pyyin;sing + (= wp +m;y,n;)cosd (B7)
- ez[—(w)singd + (w*p)cosh),
%::; v t%e(hz- Dv; +0(e?) = + (wp~myy;n,Xsind + (@ +pyyy n;)cosd (B8)
R 0] -
"?ﬁ,.‘f ~ e%wriir + ez{(wp)sing + (wifi)cosd),
R
‘% wile(hi—l)w, +0(ed) = —(wh)rsingd + (wp)rcosd + e""n,y,,n, (B9)
R
ff'm on z=1th, where h=1+r%/2.
- The right sides of the boundary conditions can be divided into three parts corresponding to
.."j{".’
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the relative normal, tangential and rotational motion of the spheres. We solve (B3)-(B6) for each

part separately. For a normal motion of the spheres, v is identically zero and p, ¥ and w do not

B depend on §. We express these latter variables as e*n,y,j n; times a regular power series in ¢, and
K4
e perform a standard asymptotic analysis. The resulting differential equations can be integrated, with
.Y the boundary conditions determining the constants of integration, until a last second order
s i
. &g differential equation involving the pressure is obtained. This is solved with the following regularity
S
‘ conditions: (i) p, is regular at »=0,-and (ii) p—0 as r—>00. The first condition is necessary so that
% the fluid velocity will be regular at 7=0, and the second condition is required so that this inner
A4
;'r solution for the pressure can match with a (regular in e) outer solution. A similar analysis is per-
f‘i formed for the relative tangential and rotational motion problems as well. The combined results
," ) are
2
£
" ' p= —%e'*nm,n,h'z + e“n,y,,n,[(lih"-%—h“)zz—%h'l-f- %h‘z--}h")] (B10)
) — el(pryyny +ar i )sind +(mpyipn; — wp)cosBlh "z + O(e*?)
"Z‘,;
3 u= e"‘n,y,,n,-%h"r(zz—hz) + [(@ryyyny + wrrit)sind +(myy;n; — wrpcosflh 1z
.’;.(": .
" + eMmyynl(- %h ~4 +3h~5rXz4 - 1Y) (B11)
N 2,2, 18,3 9, 4 v,-pny_ 3, 1_p2
éf +(40h r Sh r+8h Xz~ h?) 4r(l "))+ 0(e)
v = [(=myyyn;+wp)sind +(py;n; +wrrii)eosdlh~'z = (wi)re” + O(e) (B12)
o ) ;
"*p‘ - - - -
.":; w=e "‘n,yun][(h ’-ih ‘)ZJ"'?’I 2Z] (Bl3)
2 + Wiy -+ i king +Onyyyn; = wploosht 3k =222~ Dr
- - [(wri)sin@ — (wp)cosb)r + O(e*)
:
' By using (3), (17) and (B10)-(B13), a formula for the traction on one of the spheres can be
.y
% ; obtained. For the sphere centered at (F=0,z=—-1), it is
M
W
o
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fi ~pblL [e"mn,y,jnj(—%h‘zr) + e“[(p,y,jnj+aa-th)sinﬂ+(m,y;,-nj—m-ﬁ)cosﬂlh‘1

e myyn(Sh-tr+ 2h =259 + 0] (B14)
+[e (= myyin; +wpXind+(py;n; + wridcos8lh~! + O(1) é

+[e‘2n,yun,%h"2 + e"ln,y,,nj(%h‘l+%h‘ +%h")

— e~ "(pyyy )+ wr i )sin + (myy;; ny — v p)cosf2h ~'r + 0(1)]2]

The dominant contribution to the integral in (15) at high concentrations is from the traction
near those points which are closest to ncighboring spheres. By multiplying (B14) by x; and in-
tegrating over just that half of the sphere facing its neighbor, and summing the result over all unit

vectors /i in the direction of a nearest neighbor sphere, we obtain

f xjfidd ~ 1mL32[n,n/n,,7k,n,(-;-e'1— % Ine) + %ngnkykln, Ine (B15)
as i

—28% —mnyyumnjne + 2exwinnjlne] + 0(1).

The identity n;n;+ m;m;+ p;p; =8;; has been used to remove any explicit dependence of (B15) on
m or p.

By substituting (B15) into (7) we obtain an algebraic equation for wy. Itis
Apk W = €pjiYu 2 n;ny, (B16)
)

where 4 is given by (76). If there exist only two nearest neighbor spheres then A is singular and
the component of w; along the line through their centers is free. However, it is easily verified that

such a free component does not contribute to (B15).
The final equation for the effective viscosity is obtained by substituting A,;‘e,,,,yy 2 nym for
wi in (B15), and then substituting the result into (15). After reordering the subscripts, and using

the fact that 7~ L3 =3¢ nar/4m, we obtain (75).
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Table 1: Convergence of a for Simple Cubic Lattices

M 0 .06 J2 24 32 40 46 49
1 053803 | .18650 | 46468 | 1.4679 | 2.6563 | 4.3606 | 5.8289 | 6.5165
3 053804 | .18653 | .46552 | 1.5022 | 2.8638 | 5.3206 | 8.4031 | 10.479
) 18654 | 46579 | 1.5224 | 3.0151 | 6.2231 | 11.397 | 15.353
7 46580 | 1.5228 | 3.0239 | 6.3882 | 12.859 | 19.388
9 1.5228 | 3.0256 | 6.4440 | 13.674 | 22.260
11 . 3.0257 | 64541 | 14.022 | 24.499
13 6.4541 | 14.037 24.256

Table 2: Numerical and Asymptotic Results

Low Concentrationé Simgle Cubic Lattices
c a (comp.) | a (asymp.) {| B (comp.) | B (asymp.)
005 012735 012735 012451 .012450
01 025941 025943 024813 024812
02 053804 053810 049320 049316
04 11567 11570 97696 97677
08 26755 26756 19337 19323
q12 46530 46517 28995 28938
16 72502 J2100 .39009 38830
20 1.0666 1.0506 49665 49209
24 1.5228 1.4726 61306 .60299
28 2.1459 2.0068 74379 72355
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CAPTIONS FOR FIGURES
Nunan and Keller
a8
1 Figure 1: o for a simple cubic lattice versus concentration c, computed
g{p numerically and also from the low and high concentration expansions.
Y
N Figure 2: 8 for a simple cubic lattice versus concentration c, computed
Ty numerically and also from the low and high concentration expansions.
4 ,} Figure 3: o for a body-centered cubic lattice versus concentration ¢, computed
S numerically and also from the low and high concentration expansions.
o Figure 4: f for a body-centered cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.
Figure 5: o for a face-centered cubic lattice versus concentration ¢, computed
numerically and also from the low and high concentration expansions.
’&i{i Figure 6: B for a face-centered cubic lattice versus concentration ¢, computed
Y numerically and also from the low concentration expansion.
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Figure 1: o for a simple cubic lattice versus concentration ¢, computed
numerically and also from the low and high concentration expansions.
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Figure 2: 8 for a simple cubic lattice versus concentration ¢, computed
numerically and also from the low and high concentration expansions.
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Figure 3: a for a body-centered cubic lattice versus concentration c, computed
numerically and also from the low and high concentration expansions.
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. Figure 4: B for a body-centered cubic lattice versas concentration ¢, computed
ey numerically and also from the low and high concentration expansions. ‘
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Figure 5: o for a face-centered cubic lattice versus concentration ¢, computed
numerically and also from the low and high concentration expansions.
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Figure 6: B for a face-centered cubic lattice versus concentration c, computed
numerically and also from the low concentration expansion.
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